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CE403PC: STRENGTH OF MATERIALS – II 

 
 

Pre-Requisites: Strength of Materials - I 

 
Course Objectives: The objective of this Course is 

• To understand the nature of stresses developed in simple geometries shafts, springs, columns 

&cylindrical and spherical shells for various types of simple loads. 

• To calculate the stability and elastic deformation occurring in various simple geometries for different 

types of loading. 

• To understand the unsymmetrical bending and shear center importance for equilibrium conditions in 

a structural member of having different axis of symmetry. 

 
Course Outcome: On completion of the course, the student will be able to: 

• Describe the concepts and principles, understand the theory of elasticity, and perform calculations,  

relative to the strength of structures and mechanical components in particular to torsion and direct 

compression. 

• To evaluate the strains and deformation that will result due to the elastic stresses developed within 

the materials for simple types of loading. 

• Analyze strength and stability of structural members subjected to Direct, and Direct and Bending 

stresses. 

• Understand and evaluate the shear center and unsymmetrical bending. 

 
UNIT – I 

Torsion of Circular Shafts: Theory of pure torsion – Derivation of Torsion equation -Assumptions made in the 

theory of pure torsion – Polar section modulus – Power transmitted by shafts – Combined bending and torsion – 

Design of shafts according to theories of failure. 

Springs: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and 

axial couple – springs in series and parallel. 

 
UNIT – II 

Columns and Struts: Introduction – Types of columns – Short, medium and long columns – Axially loaded 

compression members – Crushing load – Euler’s theorem for long columns- assumptions- derivation of Euler’s 

critical load formulae for various end conditions – Equivalent length of a column – slenderness ratio – Euler’s 

critical stress – Limitations of Euler’s theory– Long columns subjected to eccentric loading – Secant formula – 

Empirical formulae –– Rankine – Gordon formula- Straight line formula – Prof. Perry’s formula. 

BEAM COLUMNS: Laterally loaded struts – subjected to uniformly distributed and concentrated loads. 
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UNIT - III 

Direct and Bending Stresses: Stresses under the combined action of direct loading and bending moment, core of a 

section – determination of stresses in the case of retaining walls, chimneys and dams – conditions for stability- 

Overturning and sliding – stresses due to direct loading and bending moment about both axis. 

 
UNIT – IV 

Thin Cylinders: Thin seamless cylindrical shells – Derivation of formula for longitudinal and circumferential 

stresses – hoop, longitudinal and Volumetric strains – changes in diameter, and volume of thin cylinders – Thin 

spherical shells. 

Thick Cylinders: Introduction - Lame’s theory for thick cylinders – Derivation of Lame’s formulae – distribution 

of hoop and radial stresses across thickness – design of thick cylinders – compound cylinders – Necessary 

difference of radii for shrinkage. 

 
UNIT – V 

Unsymmetrical Bending: 

Introduction – Centroidal principal axes of section –Moments of inertia referred to any set of rectangular axes – 

Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two 

rectangular axes through the centroid – Location of neutral axis. 

Shear Centre: Introduction - Shear center for symmetrical and unsymmetrical (channel, I, T and L) sections. 

 
TEXT BOOKS: 

1. Strength of Materials by R.K Rajput, S. Chand & Company Ltd. 

2. Mechanics of Materials by Dr. B. C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain 

3. Strength of Materials by R. Subramanian, Oxford University Press. 

 
REFERENCE BOOKS: 

1. Mechanics of Materials by R.C. Hibbeler, Pearson Education 

2. Engineering Mechanics of Solids by Popov E.P. Prentice-Hall Ltd 

3. Strength of Materials by T.D.Gunneswara Rao and M.Andal, Cambridge Publishers 

4. Strength of Materials by R. K. Bansal, Lakshmi Publications House Pvt. Ltd. 

5. Fundamentals of Solid Mechanics by M. L. Gambhir, PHI Learning Pvt. Ltd 
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UNIT-1 

 
TORSION OF CIRCULAR SHAFTS 

 
 

Simple or Single shaft 

T ζ Gθ 

--- = ---- = ------- is general equation to stress and twist due to torsion. 

Ip r L 
 

T = Torque or Torsion or Angular Velocity obtained from power Ip = Polar moment of 

inertia is sum of I xxand I yy ζ 

= Shear stress in shaft r = radius of shaft 

L = Length of shaft θ=Angle of twist in radian. G or C= Modulus of rigidity 

Convert to radian 180 

P =Hollow shaft П (D 

Ip = ----------------- Ip = I/2 only for circular section 32 

D - External dia and d – internal dia 

Solid shaft d = 0 

Therefore, П DIp =Strength of shaft 

 

 
 

Angle of twist is, 

 
Torsional rigidity is the product of G and Ip which is GIp. Zp is known as polar modulus which is ratio of 

Polar inertia over the distance from NA. 

 
Conditions: Torque is same in shafts T 1= T 2 

Twist θ = θ 1+ θ 2Shafts rotate in same direction Twist θ = θ 1- θ 

2Shafts rotate in opposite direction 

Choose the least Torque between shafts for safe stress and angle of twist. 
 

Shafts in parallel: 
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Conditions: Total Torque T = T 1+ T 2 

Twist is same in both shaft θ 1= θ 2 

The shafts may be of same material or different material, which is known as composite shaft. 

 

 

Strain energy or Torsional resilience in shaft: 

It is the amount of energy stored when the shaft is in twisted position. 

Torsional energy U = Average Torque x angle of twist 

T x θ 

When U is divided by the volume of the shaft, is known as strain energy per unit volume. 
 

Shaft coupled: 

The shaft is joined together when the length is not sufficient this is known as coupling of shaft. It is 

done in two methods. 1. Using bolts 

2. Using key 
 

Bolt method 

T can be obtained from shaft expression for bolt and keyed shaft. ζIp------2πNT T = ---- 

-- or from Power expression P = --------------------------- r 

60 

T is torque in shaft which is transmitted to the coupled shaft through bolts or key. 

Therefore torque in bolts or key is equal to torque in shaft. 

T = no. of bolts x area of bolt x stress in bolt x radius of bolt circle Therefore T = n x П 

d b 

 
Cylindrical Vessel with Hemispherical Ends: 

 
Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and hemispherical 

portion is different. While the internal diameter of both the portions is assumed to be equal 

 
Let the cylindrical vassal is subjected to an internal pressure p. 
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For the Cylindrical Portion 
 

 

 
 
 
 

For The Hemispherical Ends:  
 

 
 

 

 

 

 

 

 

 
Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two mutually 

perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are neglected in 

comparison to the hoop stresses as with this cylinder having thickness to diametre less than1:20. 

 
Consider the equilibrium of the half – sphere 
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Force on half-sphere owing to internal pressure = pressure x projected Area 

 
= p. < d2/4 

 

 
 

 

 

 
 

 
Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the spherical ends to expand 

by a different amount under the action of internal pressure. So owing to difference in stress, the two portions (i.e.  

cylindrical and spherical ends) expand by a different amount. This incompatibly of deformations causes a local 

bending and sheering stresses in the neighborhood of the joint. Since there must be physical continuity between the 

ends and the cylindrical portion, for this reason, properly curved ends must be used for pressure vessels. 

 
Thus equating the two strains in order that there shall be no distortion of the junction 

 
 
 

 
But for general steel works ν = 0.3, therefore, the thickness ratios becomes 
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L = 

 
 

t2 / t1 = 0.7/1.7 

 
 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid ends for no 

distortion of the junction to occur. 

 

 

SUMMARY OF THE RESULTS : Let us summaries the derived results 

 
(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

 
(i) Circumferential or loop stress 

 
H = pd/2t 

 
(ii) Longitudinal or axial stress 

 
L = pd/4t 

 
Where d is the internal diametre and t is the wall thic kness of the cylinder. then 

Longitudinal strain 1 / E [ L− H] 

 

Hoop   H = 1 / H − ν L ] stain E [ 

 
(B) Change of internal volume of cylinder under pressure 

 

 
 

 

(C) Fro thin spheres circumferential or loop stress 
 

 
 

 
Thin rotating ring or cylinder 
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Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p caused by the 

centrifugal effect of its own mass when rotating. The centrifugal effect on a unit length of the circumference is 

 
p = m ω 2 r 

 

 
 

 

 
 

Fig 19.1: Thin ring rotating with constant angular velocity 

 
Here the radial pressure „p' is acting per unit length and is caused by the centrifugal effect if its own mass when 

rotating. 

 
Thus considering the equilibrium of half the ring shown in the figure, 2F = p x 2r 

(assuming unit length), as 2r is the projected area F = pr 

 

 
Where F is the hoop tension set up owing to rotation. 

 
The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant across the wall 

thickness. 

 

F = mass x acceleration = m ω2 r x r 

 
This tension is transmitted through the complete circumference and therefore is resisted by the 

complete cross – sectional area. 

 

hoop stress = F/A = m ω2 r2 / A 

 
Where A is the cross – sectional area of the ring. 

 
Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density < . 
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hoop stress H = ω2 r2
 

 
 
Torsion of circular shafts 

 
Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = F.d 

applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion. 

 

 

 
Effects of Torsion: The effects of a torsional load applied to a bar are 

 
(i) To impart an angular displacement of one end cross – section with respect to the other 

end. 

 

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

 

 
Assumption: 

 
(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material. 

 
(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain. 

 
(iii) The stress does not exceed the elastic limit. 

 
(iv) The circular section remains circular 

 
(v) Cross section remain plane. 

 
(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. Consider now the 

solid circular shaft of radius R subjected to a torque T at one end, the other end being fixed Under 

the action of this torque a radial line at the free end of the shaft twists through an of distortion of 

the shaft i.e the shear strain. 



11 
 

 
 

 

 

 

 

 

Since angle in rad ius = arc / Radius 

arc AB = R 

 
 

From the definition of Modulus of rigidity or Modulus of elasticity in shear 

 
Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress ◻  

 

 
 

The force set up on each element = stress x area 
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The total torque T on the section, will be the sum of all the contributions.  

radbieucsausosewitrivtianrgieds owwitnh◻  

 
Where 

 
T = applied external Torque, which is constant over Length L; J = 

Polar moment of Inertia 

 



13 
 

 

 

 
 

[ D 

= 
 

Outside diameter ; d = inside 

 

 
diameter ] G = Modules of rigidity (or Modulus of elasticity in shear) 

 

Tensional Stiffness: The tensional stiffness k is defined as the torque per 

 

 

 

 
 

TORSION OF HOLLOW SHAFTS: 
 

From the torsion of solid shafts of circular x – section , it is seen that only the material at the outer surface of the 

shaft can be stressed to the limit assigned as an 

allowable working stresses. All of the material within the shaft will work at a lower stress and is not being used to 

full capacity. Thus, in these cases where the weight reduction is important, it is advantageous to use hollow shafts. In 

discussing the torsion of hollow shafts the same assumptions will be made as in the case of a solid shaft. The 

general torsion equation as we have applied in the case of torsion of solid shaft will hold good 

Hence by examining the equation (1) and (2) it may be seen that the max
m in the case of hollow sh aft is 6.6% larger 

than in the case of a solid shaft having the same outside diameter. Reduction in weight: 
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Considering a solid and hollow shafts of the same length 'l' and density ' 
 

 

 
 

 

 

 

 

' with di = 1/2 Do Illustrative 

Examples : 
 

Problem 1 
 

 
 

 
Hence the reduction in weight would be just 25%. 

A stepped solid circular shaft is 

built in at its ends and 

subjected to an externally 

applied torque. T0 at the 

shoulder as shown in the figure. Determine the angle of along the entire of the shoulder section where T0 is 

length of the beam. 
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rotation 0 applied ? 
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Closed Coiled helical Spring 

 
Closed Coiled helical springs subjected to axial loads: 

 

Definition: A spring may be defined as an elastic member whose primary function is to deflect or distort under the 

action of applied load; it recovers its original shape when load is released. or 

 

 

Springs are energy absorbing units whose function is to store energy and to restore it slowly or rapidly 

depending on the particular application. Important types of springs are: 

 
There are various types of springs such as 

 
(i) helical spring: They are made of wire coiled into a helical form, the load being applied along the 

axis of the helix. In these type of springs the major stresses is torsional shear stress due to twisting. They 

are both used in tension and compression. 

 
(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded in 
torsion. 
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(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to obtain 

greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types, In these type of springs 

the major stresses which come into picture are tensile & compressive. 

 
These type of springs are used in the automobile suspension system. 

 

 
 

 
Uses of springs : 

 
(a) To apply forces and to control motions as in brakes and clutches. 

 
(b) To measure forces as in spring balance. 

 
(c) To store energy as in clock springs. 

 
(d) To reduce the effect of shock or impact loading as in carriage springs. 
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( e) To change the vibrating characteristics of a member as inflexible mounting of motors. Derivation of 

the Formula : 

 

In order to derive a necessary formula which governs the behaviour of springs, consider a closed coiled spring 

subjected to an axial load W. 

 
Let 

 
W = axial load 

 
D = mean coil diameter 

d = diameter of spring wire n = 

number of active coils 

C = spring index = D / d For circular wires l = 

length of sprin g wire G = modulus 

of rigidity x 

= deflection of spring q = 

Angle of twist when the spring is being subjected to an axial load to the wire of the spring gets be 

twisted like a shaft. 

If q is the total angle of twist along the wire and x is the deflection of spring under the action of load W along 

the axis of the coil, so that x = D / 2 . < 

 

again l = < D n [ consider ,one half turn of a close coiled helical spring ] 
 

 
 

 
 

Assumptions: (1) The Bending & shear effects may be neglected 

 
(2) For the purpose of derivation of formula, the helix angle is considered to be so 
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small that it may be neglected. 

 

 
Any one coil of a such a spring will be assumed to lie in a plane which is nearly < r to the axis of the spring. This 

requires that adjoining coils be close together. With this limitation, a section taken perpendicular to the axis the spring 

rod becomes nearly vertical. Hence to maintain equilibrium of a segment of the spring, only a shearing force V = F 

and Torque T = F. r are required at any X – section. In the analysis of springs it is customary to assume that the 

shearing stresses caused by the direct shear force is uniformly distributed and is negligible so applying the torsion 

formula. 

 
Using the torsion formula i.e 

 

 
 

 

 

 

 

 

 

 
SPRING DE FLECTION 

 

 
 

Spring striffness: The stiffness is defined as the load per unit deflection therefore 
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Shear stress  

 

 
 

WAHL'S FACTOR : 

 
In order to take into account the effect of direct shear and change in coil curvature a stress factor is defined, which is 

known as Wahl's factor 

 
K = Wahl' s factor and is defined as Where C 

= spring index 

= D/d 

 
if we take into account the Wahl's factor than the formula for the shear stress 

 

 
becomes 

 
Strain Energy : The strain energy is defined as the energy which is stored within a material when the work has been 

done on the material. 
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In the case of a spring the strain energy would be due to bending and the strain energy due to bending is given by 

the expansion 

 

 
 

 
Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a maximum 

shearing stress of 400 N/mm2 .if the number of active turns or active coils is 8.Estimate the following: 

(i) wire diameter 

 
(ii) mean coil diameter 

 
(iii) weight of the spring. 

 
Assume G = 83,000 N/mm2 ; < = 7700 kg/m3 

 
solution : 

 
(i) for wire diametre if W is the axial load, then 

 

 
 

Futher, deflection is given as 

Therefore, 

D = .0314 x (13.317)3mm 
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=74.15mm D 

= 74.15 mm 

 

 

 

Weight 

 

 
Close – coiled helical spring subjected to axial torque T or axial couple. 

 

 

In this case the material of the spring is subjected to pure bending which tends to reduce Radius R of the coils. In 

this case the bending moment is constant through out the spring and is equal to the applied axial Torque T. The 

stresses i.e. maximum 

 

 

 

 
 

bending stress may thus be determined from the bending theory. 
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Deflection or wind – up angle: 

 
Under the action of an axial torque the deflection of the spring becomes the “wind – up” angle of the spring which is the 

angle through which one end turns relative to the 

 
other. This will be equal to the total change of slope along the wire, according to area – 

moment theorem 

 

 
Springs in Series: If two springs of different stiffness are joined endon and carry a common load W, they are said 

to be connected in series and the combined stiffness and deflection are given by the following equation. 

 
 

Springs in parallel: If the two spring are joined in such a way that they have a common deflection „x' 

; then they are said to be connected in parallel.In this care the load carried is shared between the two springs and total 

load W = W 1 + W2 
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UNIT -2 

 
Columns and Struts 

 
Introduction: 

Structural members which carry compressive loads may be divided into two broad categories depending on their 

relative lengths and cross -sectional dimensions. Columns: 

 
Short, thick members are generally termed columns and these usually fail by crushing when the yield stress of the 

material in compression is exceeded. Struts: 

 
Long, slender columns are generally termed as struts, they fail by buckling some time before the yield stress in 

compression is reached. The buckling occurs owing to one the following reasons. (a). the strut may not be perfectly 

straight initially. 

 

(b). the load may not be applied exactly along the axis of the Strut. 

 
(c). one part of the material may yield in compression more readily than others owing to some lack of 

uniformity in the material properties through out the strut. 

 
In all the problems considered so far we have assumed that the deformation to be both progressive with increasing 

load and simple in form i.e. we assumed that a member in simple tension or compression becomes progressively 

longer or shorter but remains straight. Under some circumstances however, our assumptions of progressive and 

simple deformation may no longer hold good and the member become unstable. The term strut and column are 

widely used, often interchangeably in the context of buckling of slender members.] 

At values of load below the buckling load a strut will be in stable equilibrium where the displacement caused by any 

lateral disturbance will be totally recovered when the disturbance is removed. At the buckling load the strut is said 

to be in a state of neutral equilibrium, and theoretically it should than be possible to gently deflect the strut into a 

simple sine wave provided that the amplitude of wave is kept small. 
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Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads exceeding the 

buckling load, any slight lateral disturbance then causing failure by buckling, this condition is never achieved in 

practice under static load conditions. Buckling occurs immediately at the point where the buckling load is reached, 

owing to the reasons stated earlier. 

 
The resistance of any member to bending is determined by its flexural rigidity EI and is The quantity I may be written 
as I = Ak2, Wh ere I = area of moment of inertia A = 
area of the cross -section k = 

radius of gyration. 

 
The load per unit area which the member can withstand is therefore related to k. There will be two principal moments of 

inertia, if the least of these is taken then the ratio 

 

 
 

Is called the slenderness ratio. It's numerical value indicates whether the member falls into the class 

 

of columns or struts. 

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the 

following sections, different cases of the struts have been analyzed. Case A: Strut with pinned 

ends: 

 
Consider an axially loaded strut, shown below, and is subjected to an axial load „P' this load „P' produces a 

deflection „y' at a distance „x' from one end. 

Assume that the ends are either pin jointed or rounded so that there is no moment at either end. 

 
Assumption: 

 

The strut is assumed to be initially straight, the end load being applied axially through centroid. 
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In this equation „M' is not a function „x'. Therefore this equation can not be integrated directly as has been done in the 
case of deflection of beams by integration method. 

 

 

 
Though this equation is in „y' but we can't say at this stage where the deflection would be maximum or min 

imum. 

So the above differential equation can be arranged in the 

following 

 

    form 

Let us define a operator D = d/dx 

(D2 + n2) y =0 where n2 = P/EI 

 
This is a second order differential equation which has a solution of the form consisting of complimentary function 

and particular integral but for the time being we are interested in the complementary solution only[in this P.I = 0; 

since the R.H.S of Diff. equation = 0] Thus y = A cos (nx) + B sin (nx) Where A 

and B are some constants. 

 

Therefore 

 
In order to evaluate the constants A and B let us apply the boundary conditions, 

 
(i) at x = 0; y = 0 

 
(ii) at x = L ; y = 0 
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Applying the first boundary condition yields A = 0. Applying 

the second boundary condition gives 

 

 

 

 
 

From the above relationship the least value of P which will cause the strut to buckle, and it is called the “ 
Euler Crippling Load ” Pefrom which w obtain. 

 

 

The interpretation of the above analysis is that for all the values of the load P, other than those which make sin nL = 0; 

the strut will remain perfectly straight since y = B sin nL = 0 

 

 
For the particular value of 
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Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection which it suffers will be 

maintained. This is subjected to the limitation that „L' remains sensibly constant and in practice slight increase in 

load at the critical value will cause the deflection to increase appreciably until the material fails by yielding. 

Further it should be noted that the deflection is not proportional to load, and this applies to all strut problems; like wise 

it will be found that the maximum stress is not proportional to load. 

The solution chosen of nL = < is just one particular solution; the solutions nL= 2< , 3< , 5< etc are equally valid 

mathematically and they do, infact, produce values of 

 
„Pe' which are equally valid for modes of buckling of strut different from that of a simple bow. Theoretically therefore, 

there are an infinite number of values of Pe , each corresponding with a different mode of buckling. 

The value selected above is so called the fundamental mode value and is the lowest critical load producing the 

single bow buckling condition. 

The solution nL = 2< produces buckling in two half – waves, 3< in three half-waves etc. 

 

 
If load is applied sufficiently quickly to the strut, then it is possible to pass through the fundamental mode and to 

achieve at least one of the other modes which are theoretically possible. In practical loading situations, however, 

this is rarely achieved since the high stress associated with the first critical condition generally ensures immediate 

collapse. 
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struts and columns with other end conditions: Let us consider the struts and columns h aving different 

end conditions 

 

 

 

 

 

 
 
Case b: One end fixed and the other free: 

 
 

 
writing down the value of bending moment at the point C 

 

 
 

Hence in operator form, the differential equation reduces to ( D2 + n2 ) y = n2a 

 
The solution of the above equation would consist of complementary solution and particular solution, therefore 

y gen = A cos(nx) + sin(nx) + P. I where 

P.I = the P.I is a particular value of y which satisfies the differential equation Hence y P.I = a Therefore 

the complete solution becomes Y = A cos(nx) + B sin(nx) + a 

Now imposing the boundary conditions to evaluate the constants A and B 
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( i) at 

x = 0; y = 0 

This yields A = -a 

( ii) at x = 0; dy/dx = 0 This yields B = 0 

Hence y = < a cos(nx ) 

+ a Futher, at x = L; y = a 

Therefore a = - a cos(nx) + a or 0 = cos(nL) 

 
 

Due to the fixed end supports bending moment would also appears at the supports, since this is the property of the 

support. 

Bending Moment at point C = M – P.y 

 
One end fixed, the other pinned 

 

In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this case to introduce 

a vertical load F at the pin. The moment of F about the built in end then balances the fixing moment. 

With the origin at the built in end, the B,M at C is given as 

Now the fundamental mode of buckling in this case would be 

Case 3 

Strut with fixed ends: 
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Also when x = L ; y = 0 

Therefore nL Cos nL = Sin nL 

 

 
The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore produces the fundamental 

buckling condition is nL = 4.49radian 
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Equivalent Strut Length: 

 
Having derived the results for the buckling load of a strut with pinned ends the Euler loads for other end conditions 

may all be written in the same form. 

 

 

 
Where L is the equivalent length of the strut and can be related to the actual length of the strut depending on the end 

conditions. 

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the strut deflection curves 

shown. The buckling load for each end condition shown is then readily obtained. The use of equivalent length is not 

restricted to the Euler's theory and it will be used in other derivations later. 

The critical load for columns with other end conditions can be expressed in terms of the critical load for a hinge d 

column, which is taken as a fundamental case. 

For case(c) see the figure, the column or strut has inflection points at quarter points of its unsupported length. Since 

the bending moment is zero at a point of inflection, the freebody diagram would indicates that the middle half of the 

fixed ended is equivalent to a hinged column having an effective length L e = L / 2. The four different cases which 

we have considered so far are: 

 

(a) Both ends pinned (c) One end fixed, other free 

 
(b) Both ends fixed (d) One end fixed and other pinned 
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Limitations of Euler's Theory : 
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In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load being applied axially 
through centroid] reached. There is always some eccentricity and initial curvature present. These factors needs to be 

accommodated in the required formula's. 

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection which 

increases with load and consequently a bending moment is introduced which causes failure before the Euler's load 

is reached. Infact failure is by stress rather than by buckling and the deviation from the Euler value is more marked 

as the slenderness-ratio l/k is reduced. For values of l/k < 120 approx, the error in applying the Euler theory is too 

great to allow of its use. The stress to cause buckling from the Euler formula for the pin ended strut is 

 
A plot of < e versus l / k ratio is shown by the curve ABC. 

 

 

 

 

 

 

 

 
Allowing for the imperfections of loading and strut, actual values at failure must lie within and below line CBD. 

Other formulae have therefore been derived to attempt to obtain closer agreement between the actual failing load and the 

predicted value in this particular range of slenderness ratio i.e.l/k=40 to l/k=100. 

(a) Straight – line formulae : 
 

The permissible load is given by the formulae 
 

 

Where the value of index „n' depends on the material used and the end 

conditions. 
 

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as 
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where the value of index „b' depends on the end conditions. 

 
(a) Rankine Gordon Formulae : 

 

 

Where Pe = Euler crippling load 

 
Pc = Crushing load or Yield point load in Compression PR = 

Actual load to cause failure or Rankine load 

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

 
For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be neglected. 

 

Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/ P ccan be neglected 

,hence PR = Pe 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly accurate for the 

intermediate values in the range under consideration. Thus rewriting the formula in te rms of stresses, we have 

 
 

 

 

 

 

 

 

 

 

 

 
 

. 
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Where and the value of „a' is found by conducting experiments on various materials. Theoretically, but having a 

value normally found by experiment for various materials. This will take into account other types of end conditions. 
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UNIT-3 

DIRECT AND BENDING STRESSES 
 

 

 

 

 

 

 

 
 

 

 

 
AXIAL LOAD AND BENDING MOMENT 

Figure .shows an isometric view of a rectangular section loaded with an axial load ‘P’, 

applied long its vertical axis through the centroid of the horizontal section. We say such a 
member is subjected to uniform compressive stress or direct compressive stress of 

magnitude P/A, where ‘A’ is the area of the horizontal cross-section. 

 

 

 

 

 

 

 

 

 

 

 
 

After studying this unit, you should be able to 

 calculate the stresses for different eccentrically loaded cross-section, 

 explain the Middle Third Rule for no tension condition, 

 analyse the effect of wind forces and their 

stress distribution pattern onmasonry walls, 
pillars and tall chimneys, and 

 design sections for members carrying direct 

compressive force and bendingstresses. 
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forces and Stressesin BeamsIf the point of application of load P is displaced by a small distance ‘e’ 

from the axis, asshown in Figure 7.1(b), the distribution of stress in the member is considerably 

affected.(Here, ‘e’ is called the eccentrically of loading.) 

Figure 7.1(c) shows the elevation of the member is viewed from the face ABCD. Due to 

the eccentric load P, the member is distorted or bend, as shown in Figure 7.1(d). The left 

half portion and so the side AD will be in tension and the right half and so the side BC 

will be in compression, thereby making the central axis of the member as neutral axric 
load, the member is subjected to direct stressaccompanied by the bending stress. 

 

 

 

P 

P P  

A B 
A A 

 
 
 
 
 
 
 
 
 

D D 
D C 

C C 

(a) (b)  (c) (d) 

Figure .1 

ECCENTRICALLY LOADED SECTIONS 
 

Load Acting Eccentric to One Axis 

In order to study the effect of eccentric load more closely, let us consider a short axial 

member, loaded with load P, placed at a distance ‘e’ from the centroidal vertical axis 
through the centroid of the section, as shown in Figure 

P P 

 
 
 
 
 
 

 

(a) 

 

 

 
 

Load 
 

P / A = fo 
(c) 

 

 
 

 
 

Figure 

 Pe   = f 
z b 

(d) 

T
e
n
s
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n
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o
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s
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n
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b 

 

 

Along the vertical axis, introduce two equal and opposite forces, each equal to load P. Their 

introduction obviously makes to difference to the loading of the member, as they cancel out 

each other. However, if the upward force P is considered along with at a distance e from 

each other, from a clockwise couple of magnitude P  e, the effect of which is to produce 
bending stress in the member. The remaining central downward forceP, produces a direct 

compressive stress f0, of magnitude P/A as usual. Hence, we can conclude that an eccentric 

load produces direct compressive stress as well as the bending stress. 

The bending couple P  e will cause longitudinal tensile and compressive stresses. The 

fibre stress due to bending f0, at any distance ‘y’ from the neutral axis is given by, 

Direct and Bending 

Stresses 

f  
M 

Ixx 

 y  
P  e  y 

Ixx 

 

(tensile or compressive) . . . (.1 

Hence, the total stress at any section is given by 

f  f    f    
P 
 

P  e  y . . . (.2) 
0 b 

A Ixx 

f  
P 
 

M
 

A Zxx 

[where P  e  M and 
Ixx

 

y 
 Zxx (the section modulus)]. 

The extreme fibre stresses are given by, 
 
 

f  f   f  
P 
 

M
 

max 0 b A Zxx
 

and f  f    f    
P 
 

M . . . (.3) 

min 0 b A Zxx
 

If f0 is greater than fb, the stress throughout the section will be of the same sign. If 

however, f0 is less than fb, the stress will change sign, being partly tensile and partly 
compressive across the section. Thus, there can be three possible stress distributions as 
shown in Figures 7.3(a), (b) and (c). You can observe from Figure 7.3(c), that when 

f0 = fb, fmax = 2f0 and fmin = 0. 

(fo – fa) 
 

 
 

fb 

(a) fo > fa 

(fo – fa) 

fo 

fo 

(b) fo < fa 
fb 
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O 

 
 
 
 
 
 
 

Figure .3 

f 

(c) fo = fa 
f 



42  

 

 

 

 

 

 

Forces and Stresses 

in Beams 

Load Acting Eccentric to Both Axis 

If the axial load P is placed eccentric to both x-axis and y-axis as shown in Figure .4, 
then the system can be assumed to consist of 

(a) a direct compressive force P acting at the centroid, 

(b) a couple P  ex about the x-axis, and 

(c) a couple P  ey about the y-axis. 

As seen for the case of load acting eccentric to one axis, the stress at any point can be 

written as 

f  f0  fb1  fb2 

 
P 
 

P  ex  y  
P  ey 

 x 
   

A Ixx 

 
P 
 

Mxx  
M yy

 
  

Ixx  

 
. . . (.4) 

A Zxx Zyy 

The maximum or minimum fibre stress will occur at the corner point A, B, C or D in 

Figure .4 for the symmetrical section. 

y +
Myy 

 
 
 
 
 
 
 
 

X 

 
 
 
 
 
 
 

 
 

Neutral Axis 

 
y 

Figure .4 

 

 

If you refer to Figure .1(d), the side AD will be in tension while the side BC will be in 

compression. The fibres along the side AD elongates, while the fibres along the side BC 

shortens. Also there exists one fibre in between these two faces which neither have 

extension nor compression. This layer is called the neutral layer. The line of intersection 
of neutral layer with the plane of cross-section, of the member is called the neutral axis. 

For members subjected to bending only, the neutral axis passes through the centroid of 

the section. At the neutral axis, the stress will be zero. 
 

 

CONDITION FOR NO TENSION IN THESECTION 

Middle Third Rule 

In Figure (b) f0 < fb and therefore, stress changes sign, being partly tensile and partly 
compressive across the section. In masonry and concrete structures, the development of 

B A 

X 

+ 
MXX 

C D 

e(-)
y

 

e(+)
y
 

P 

y e+ 

e-
y 
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1 




e 

tensile stress in the section is not desirable, as they are weak in tension. This limits the 

eccentricity e to a certain value which will be investigated now for different sections. 

In order that the stress may not change sign from compressive to tensile, we have 

f0  fb 

i.e. P 
 

Pe 
 

d 

A I 2 

 P 


 Ped   

A 2 AK 2 

2k 2 

Direct and Bending 

Stresses 

or e 
d 

where, k = radius of gyration of the section with regard to N.A. and d is the depth of the 

section. 

 
Thus, for no tension in the section, the eccentrically must not exceed 

2k 2 
. 

d 

Let us now take a rectangular section and find out the limiting value of e. 

For a rectangular section of width b and depth d, 

I  bd 3 and A  bd 
12 

2 
 

I 
 

d 2 k 

A 12 

Substituting in Eq. (7.5), we get 

e    
2d 2 d 

d 12 6 

 I  
d
 

 

max 
6

 

The value of eccentricity can be on either side of the geometrical axis. Thus, the stress 

will be of the same sign throughout the section if the load line is within the middle third 

of the section. 

In the case of rectangular section, the maximum intensities of extreme stresses are given 

by 

f  
P 
 

Pl 
 

P 
 

6 pe 

A Zxx bd bd 2 

 
P 

1  6e 


bd 

  d 

 to 

Core or Kernel of a Section 
th

 

If the line of action of the stress is on neither of the centre lines of the section, the a 

bending is unsymmetrical. However, there is certain area within the line of action of the x 

force P must cut the cross-section if the stress is not to become tensile. This area we call e 

it as ‘core’ or ‘kernel’ of the section. Let us calculate this for a rectangular section. s 

s 
Rectangular Section h 

Let the point of application of the load P have the coordinates (x, y), with reference o 

w 
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n in Figure (a) in which x is positive when measured to right ofO and y is positive 

when measured upwards. 
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A B 

D C 

O 

 

P ( x,y ) 

 
 

 

 

Forces and Stresses y 

y 

in Beams 
A B 

 
 
 

 

X X b X 
 

P O r 

s 

b/3 X 

 

d/3 

 

D 
y 

C 

y 

d 

(a) 

 

 

 
Figure 

d 

 

(b) 

The stress at any point have coordinates (x, y) will be 

f  
P 

 
P  yy 

    
P  xx 

bd 1 
db3 

1 
bd 3 

12 12 
12P  1 yy xx            2    2 
bd 12 b    d 

 
 

At D, 

have, 

 

x   
d 

and y   
b 

and, therefore, f will be minimum. Thus, at D, we 
2 2 

f   
6bdP  16   b

y  
  d

x 

 

The value of f reaches zero when 

y 
 

x 
 

1 
or 6 y 

 
6x 

 1
 

b d 6 b d 

Thus, the deviation of the load line is governed by the straight line of Eq., 

whose intercepts on the axes are respectively 
b 

and 
6 

d 
. This is true for the load 

6 
line is the first quadrant. Similar limits will apply in other quadrants and the stress 
will be wholly compressive throughout the section, if the line of action of P will 

within the rhombus pqrs (Figure 7.5(b)), the diagonals of which are of length  
d

 
3 

and 
b 

, respectively. This rhombus is called the core of the rectangular section. 

3 
 

STRESS DISTRIBUTION FOR DIFFERENTECCENTRICALLY LOADED SECTIONS 

 

Circular Section  

q 
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We have seen that for no tension, 

2k 2 
e     

d 
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 
2 d d 

k 

 
 

 
 

 

For a solid circular section, 

 d 4 
I  ; 

 

A  
 

d 2 

64 4 

 k 2 
 

I 
 

d 2 

A 16 
2 

e    . . . (7.10) 
  

d 16 8 

Direct and Bending 

Stresses 

 

Figure 

Thus, in order that tension is not to be developed, the load line must fall within middle 
fourth of the section. The core in this case is a circle with the same centre and diameter 
d 

as shown in Figure 7.6. 
4 

Hollow Section 

For a hollow section, having external diameter D and internal diameter d, 

I  
 

(D4  d 4 ); and A  
 

(D2  d 2 ) 

64 4 

 2   
 I 

 
D4  d 4 

 
D2  d 2 

 
 e 

A 16 (D2  d 2 ) 16 

2  D2  d 2   D2  d 2 

 D  16 

 
  8D  . . . (7.11) 

The core for a hollow circular section is thus, a concentric circle of diameter 

 D2  d 2 
 4D 
 

d/4 

d 

. 



48  





k k 2 2 


















Structural Sections 

Eq. (7.8) can be rewritten in the form, 


f  1  yy

x2 



xx 
2 

 

 k ky 


where kx and ky are radii of gyration of the area of section about the axes of x and y, 
respectively. 

For zero stress at the point, we must have 

yy 
 

xx 
  1

 

x y 
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P 

e 
A c.g. 

o 

B 

X X 

 
kx b 

y 

y 

Forces and Stresses 

in Beams 

 

 

 

 

 

 
d 

y 

b 

Figure 7.7 

For an I-section, the four corners will be the limiting points, where 

Hence, we have 

 
x  

b
 

2 

 

and y  
d 

. 

2 

yd 
2k2 

 2
x
k
b2

   1 

x y 

2 

y  


2k 2 

x  x 

k 2 d d 

Eq. is the equation of the bounding line which limits the deviation of load from the 

centroid for no change in the sign of the stress, for I-section. The equations to the three 

other bounding lines will be similar, thus, forming a rhombus having the principal axis of 
I-section as diagonals, as shown in Figure . 

Example .1 

A cast iron column of 200 mm diameter carries a vertical load of 400 kN, at a 

distance of 50 mm from the centre. Determine the maximum and minimum stress 

developed in the section, along the diameter passing through the point of loading. 

y 

 

x x 200 mm 

 

y 

 
(a) 

 
 

 
7.64 N/mm2 

33.104 N/mm2 

(Compression) 

(Tension) 

 
(b) Stress Distribution along the Diagonal 
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Solution 

Vertical load, P = 400 kN = 400  103 N 

Diameter of the section, D = 200 mm 

Area of the section, A  
 

(200)2  31416 mm2 
4 

P 4  105 2

 

Direct and Bending 

Stresses 

Direct stress, 
0   31416 

 12.732 N/mm 

A 
Eccentricity, e = 40 mm 

Bending moment, M  P  e  (400  103) 40  16  106 N-mm 

 D3  (200)3 3 3 

Section modulus, z      785.4  10 mm 
32  32 

Bending stress, 
f   

Pe
 

b 
Z

 

16  106 

  
785.4  103 

20.372 N/mm 

 Resultant stress at the edge, B  f0  fb    12.732  20.372 

 33.104 N/mm2 (compressive) 

 Resultant stress at the edge, A  f0  fb    12.732  20.372 

  7.640 N/mm2 (tensile) 

The stress distribution along the diameter is as shown in Figure 7.8(b). 

Example 2 

A short hollow cylindrical column carries a compressive force of 400 kN. The 

external diameter of the column is 200 mm and the internal diameter is 120 mm. 

Find the maximum permissible eccentricity of the load, if the allowable stresses 
are 60 N/mm2 in compression and 25 N/mm2 in tension. 

Solution 

External diameter, D = 200 mm 

Internal diameter, d = 120 mm 

Area of the section, A  
 

(D2  d 2 )  
 

(2002  1202 )  2.01  104 mm2 
4 4 

f 
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D 
 

Applied load, P  400 kN  4  105 N 

f  
P 





4  105 2 
 

Direct stress, 0 
A

 
 19.9 N/mm 

2.01  104 
(compressive) 

 

Let the eccentricity of the load = e mm. 
 

Bending moment, M  P  e  (400  105  e) N-mm 

Section modulus, z  



64 

 


(D4  d 4 )  
 2 



 

(2004  1204 ) 
  

4 3 
 

 

32 200 
68.36 10   mm 
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Forces and Stresses 

in Beams 

Bending stress, 
f     

M 
 

b 
Z

 

  
(4 105  e) 

(68.36  104 ) 

  0.585  e 

Resultant stress at extreme fibres  f0  fb  19.90  0.585 e 

 Maximum compressive stress  (19.90  0.585 e) 

(i) 

 

 

 

 

 

 

 

 

 

. . . 

Minimum compressive stress  (19.90  0.585 e) 

or Maximum tensile stress  (0.585 e  19.90) 

(ii) 

Thus, (19.90  0.585 e)  60 N/mm2   (allowable compressive stress) 

 

 
. . . 

 



(iii) (

i

i

i
) 

 

 



e  68.55 mm 

 

(0.585 e  19.90)  25 N/mm2 

e  8.72 mm 

 

 

 
(allowable tensile stress) 

. . . 

 

 

 

. . . (iv) 

 

From these two conditions, the allowable maximum eccentricity = 8.72 mm from 

the centre of the section. 

Example .3 

A beam of rectangular section of 80 mm to 120 mm carries a uniformly distributed 

load of 40 kN/m over a span of 2 m an axial compressive force of 10 kN. Calculate 

(a) maximum fibre stress, 

(b) fibre stress at a point 0.50 m from the left end of the beam and 40 mm 

below the neutral axis. 

 

 
40 KN/m 

 
 

2 m 
 

80 mm 
 

 
 

Solution 

(a) Loading (b) Cross-section 

Figure 7.9 

w  e2 40  22 6

 
Bending moment, M    20 kN-m = 20  10 N-mm 

8 8 

 

A B 

 
0.5 m 

 

 
120 mm 

 
N 

40 mm 
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Section modulus, Z  
1 
 80  (120)2  1.92  105 mm3 

6 
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K 

15 mm 

K 

1 

2 

Moment of inertial, I   (80)  (120)3  11.52  106 mm4 
12 

Axial load, P  10 kN  10  103 N 

P 10  103 2

 
Direct stress, f0        1.04 N/mm 

A (80  120) 

Direct and Bending 

Stresses 

f   
M

 
 

20  106 2 
 

Bending stress, b 
Z

 
  104.16 N/mm 

1.92  105 
 

 Maximum fibre stress  1.04  104.16  105.20 N/mm2 

 Bending moment at 0.50 m from left end, 

 0.502 

M    40  0.50  40  
 

  15 kN-m 

 15  106 N-mm (sagging) 

 Bending stress at 40 mm below the neutral axis, 

 
M 

. y 
I 

(compressive) 

 
15  106 

(11.52  106 ) 

 
 ( 40) 

 

  52.08 N/mm2 (tensile) 

 Resultant fibre stress  1.04  52.08 

  51.04 N/mm2 (tensile) 

Example .4 

A rectangular plate 10 mm thick with a hole of 50 mm diameter drilled on it is as 

shown in Figure 7.10. It is subjected to axial pull of 45 kN. Determine the greatest 

and the least intensities of stress at the critical cross-section of the plate. 

 

 

 

 
 

50 mm 40 

 
 

 
P P 

 

50 

50 mm 

 
 
 
 
 

 

Critical Section 
along 

y2 = 35 

10 

y1 = 65 

10 

10 

5
0
 m

m
 

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B A 

C D 

c.g. 

 
ey    P 

ex 

 
 

 
O 

Forces and Stresses 

in Beams 
Solution 

Area of section at the weakest point, A  (10  10)  (40  10)  500 mm2 . 

To locate the centroidal axes, taking moments about AB, 

y  
(10  10)  (40  10  80) 

 65 mm bottom
 

1 (10  10)  40  10) 

Thus, y2  100  65  35 mm 

Moment of inertia about xx-axis, 

10  403 2 10  103 2 

Ixx 
 40  10  (35  20)   10  10  (65  5) 

12 
12 

 50.42  104 mm4 

Axial load, P = 45 kN = 45  103 N (tensile) 

P 45  103 2

 
Direct stress, 

0   500 
 90 N/mm (tensile) 

A 
Eccentricity, e = 65 – 50 = 15 mm 

Bending stress along edge, AB  
P  e 

 y 
Ixx 

 
4550.4120

3  

10145  
 ( 65) 

 

 

  87 N/mm2 

 45  103  15 

(compressive) 

Bending stress along edge, CD   50.42  104 
  (35) 

 

 46.8 N/mm2 (compressive) 

Maximum stress along edge, AB   (90  87)   177 N/mm2 (tensile) 

Minimum stress along edge, CD   90  46.8   43.2 N/mm2 

Example .5 

(tensile). 

A short hollow pier 1.6 m  1.6 m outsides and 1.0 m  1.0 m intersides supports a 

vertical load of 2000 kN at a point located on a diagonal 0.5 m from the vertical 
axis of the pier. Calculate the normal stresses at the 4 corners of the section of the 

pier, neglecting its self weight. 

y 

 

1.6 m 

 
1 m 

x x 

f 
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y 
 

1 

m 

1.6 
m 
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xx       

m 

e 

 

 
Solution 

Figure 7.11 shows the section of the pier. At P, the load of 2000 kN is applied on 

the pier. 

Area of cross-section A = 1.62 – 1.02 = 1.56 m2. 

Direct and Bending 

Stresses 

Section modulus, Z  
1.604  1.004 

 
   2    

 0.5875 m3 

Zyy 
12 

 1.60 


Eccentricity about XX-axis = Eccentricity about YY-axis 

= 0.50 sin 45o 

= 0.353 m 

Bending moment about XX-axis = Bending moment about YY-axis 

= (2000  0.353) 

= 706 kNm 

Direct stress, f    
P 
 

2000 
 1282.05 kN/m2 

(compressive) 
  

0 A 1.56 

Bending stress about XX-axis = Bending stress about YY-axis 

  
M 

  
706 

 
  1220.4 kN/m2 

Z 0.5785 

 Resultant stresses at corners, f  
P 
 

M xx
 

A Zxx 

Stress at corner A  1282.05  1220.4  1220.4 

 
M yy 

Zyy 

 

 3722.85 kN/m2 (compressive) 

Stress at corner B  1282.05  1220.4  1220.4 

 1282.05 kN/m2 (compressive) 

Stress at corner C  1282.05  1220.4  1220.4 

  1158.75 kN/m2 (tensile) 

Stress at corner D  1282.05  1220.4  1220.4 

 1282.05 kN/m2 (compressive) 

SAQ 1 

(a) A cast iron column of rectangular section 200 mm  300 mm carries a 
m 

vertical load of 250 kN at a point 30 mm away from the c.g. of the section 
a
 

on a line passing through the centroid and parallel to the longer side. 
xi

 
Determine the maximum stress at the edges of the line passing through the 

m
 

centroid on which the point of application of load lies. 
u
 

(b) If the above member is subjected to a compressive load of 100 kN acting at di 

a point 40 mm away from its c.g. and along a diagonal, what will be the st 

resultant stresses at the four corners of the top face of the column? a 

(c) A short column of hollow circular section of internal diameter ‘d’ and 
n 

external diameter ‘D’ is loaded with a compressive load W. Determine the 
c
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of the point of application of the load from the centre of 
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40 

10 

40 20 

 
10 

20 

 
 
 
 
 

O c.g. 

P 

40 

Forces and Stresses 

in Beams 
 

 
SAQ 2 

the section, such that the tensile stress does not exist at any point of the 

cross-section, if D = 1.5 d. 

(a) A rectangular plate 20 mm thick, containing a square hole of 20 mm side as 

shown in Figure 7.12 is subjected to an axial pull of 30 kN. Determine the 
greatest and least tensile stresses at the critical section of the plate. 

 

 

 

 

 

 

30 KN 30 KN 

 
 
 
 
 
 
 

 

(b) The cross-section of a short column is shown in Figure 7.13. A vertical load 
W kN acts at the point P. 

(i) Determine the value of W if the maximum stress set up in the 

cross-section is not to exceed 75 N/mm2. 

(ii) Draw the stress distribution diagram along the edge AD. 
 

D C 

 
y2 

 

80 

10 
 

y1 

 

 

A B 

80 
 

(c) A short hollow cylindrical cast iron column having outside diameter 

300 mm and inside diameter 200 mm was cast in a factory. On inspection it 

was found that the bore is eccentric in such a way that the thickness varies 

from 30 mm at one end to 70 mm at the outer. Calculate the extreme 

intensities of stress induced in the section, if column carries a load of 

800 kN along the axis of the bore. 

 

 

 

 

Example .6 

A rolled steel I-section, flanges 150 mm wide and 25 mm thick, web 200 mm long 
and 10 mm thick (Figure 7.14) is used to carry and axial load of 800 kN. The load 
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4 
150 

P 

ex = 50 

10 

1 

1y50 

e
y
 
=

 3
0

 



line is eccentric, 50 mm above XX and 30 mm to the left of yy. Find the maximum 

and minimum stress intensities in the section. 

y 

Direct and Bending 

Stresses 

3 

 
 

X 200 X 

 
25 

2 

 
 
 

 

Solution 

Area of the cross-section, 

A  2  (150  25)  (200  10) 

= 9500 mm2 

Moment of inertia about XX-axis, 

150  2503 140 (20)3 4 4 
    8565  10 mm 

Ixx  
12 

12 

Moment of inertia about YY-axis, 

2  (25  150
3 
) 200 (10)

3 
4 4 

    1407  10 mm 
I yy  

12
 

Eccentricity, ex  50 mm 

ey   30 mm 

Vertical load, W = 800 kN 

Direct stress at any point, 

0 

12 

 
 

 

 

 

P 800  10
3 

2 

 9500 
 84.2 N/mm 

A 
Maximum bending compressive stress will occur at edge 4 of the section in 
Figure 7.14. 

( f )  
 P  ex  y 

 
 
 P  ey 

 x 



b 4       

 Ixx   I yy 
808056510

3  
 450   800  103  (4  30) 

  10 
 ( 125)   

1407  10 
  75 

   

= 186.4 N/mm2 

Maximum bending tensile stress will occur at edge 2 at the section. 

2  800  103  50   800  103  ( 30) 

( fb )   
8565  104

 
 
 ( 125)  

 1407  104 
 
 75 

f 
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Forces and Stresses 

in Beams 
=  18.64 N/mm2 

Resultant stress in the section would be as follows : 

Maximum at corner 4 = 84.2 + 186.4 = 270.6 N/mm2 

Minimum at corner 5 = 84.2 – 186.4 =  102.2 N/mm2 (tensile) 

Example 7 

A short piece of ISA (200  100  15) angle carries a compressive load, the line of 

action of which coincides with the intersection of the middle planes of the legs. If 

the maximum compressive stress is not to exceed 112 N/mm2, what is the safe 

axial load P? Given A = 4278 mm2, rxx = 64 mm, ryy = 26.4 mm. 

y 

 
 

 
15 

 
 
 

200 

 

 

x x 

 

P 

15 

y 

22.2 

100 

71.8 

 

 

Solution 

Area of cross-section A = 4278 mm2 

Eccentricity of load with respect of xx-axis = (71.8 – 7.5) = 64.3 mm 

Eccentricity of load with respect to yy-axis = 22.2 – 7.5 = 14.7 mm 

Maximum compressive stress at any section 

 
P 
 

M xx  y  
M yy 

 x 
   

A Ixx I yy 
 

 
or fmax 

P 

A 
1 



exx 

rx
2
x  

y 
eyy 

ry
2
y 



 
x 



Here, rxx = 64 mm and ryy = 26.4 mm 

fmax = 112 N/mm2
 

 112   
PA 1   

64.(364)72 1.8  
 

14(.276.42)22.2 

 


 
P 

4278 
[1  1.127  0.4684] 
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 P = 184.6 kN. 
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250 

6.1 

100 

SAQ 3 

(a) A short piece of ISLC 250 channel (Figure 7.16) carries a compressive load, 

the line of action of which through the centroid of the web. If the allowable 

maximum compressive stress is 112 N/mm2, calculate the safe axial load. 

(Given : A = 3565 mm2, ryy = 28.9 mm, t = 6.1 mm). 

Direct and Bending 

Stresses 

 

y 

27 

 
 
 
 
 
 

 

x x 

 
 
 
 
 
 
 

 
y 

 

(b) A bar of T-section as shown in Figure 7.17 is subjected to a longitudinal pull 

P applied at a point on the yy-axis but not at the centroid of the section. 
Determine the magnitude of P and the position of its line of section if the 

stresses across the section vary from 10 N/mm2 compression at the top to 

120 N/mm2 tension at the bottom. 

y 
 

60 
    A B      

10 

 

y 

 
 

 
x x 

 

70 

 
 
 
 
 

C D 

10 
y 
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D 

Forces and Stresses 

in Beams 

 
 

WALLS AND PILLARS 
 

 

Wind Forces on Walls and Pillars 

Many a times masonry walls and chimney shafts are subjected to strong wind pressures. 

The weight of the walls or the chimney produces compressive stress in the base while the 
wind pressure introduces bending moment producing tensile and compressive stresses in 

the base. 

Figure shows a masonry wall of height H and rectangular section B  D. the 

horizontal wind pressure of intensity ‘p’ is acting on the face of width B. 

Masonry Wall 

 
 
 

Wind 
Pressure 

p 

 
 

 

P H 

 
 

H / 2 

 
 
 
 

 
N.A. 

d c 
 

B 
 

a b 

 

Let the unit 

weight of the material of the structure = Self weight 

of the structure W =  (BDH) 

Area of cross-section at the base = B  D 

Compressive stress due to self weight of the structure on its base, 

f  
 (BDH ) 

  H
 

0 BD 

Total wind force on the vertical face = P = p  BH 

Distance of centre of gravity of the wind force from the base  
H

 

2 

PH BH 
2
 

Bending moment, M   p 
2 2 

BD2 
Section modulus, Z     

6 

M BH 2 6 H 2 

Bendi   ng stress, fb  
Z
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 
p  2 


BD2 

  3 p 


D2 
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Due to Bending Moment (BM), there will be maximum tensile stress along edge ‘ad’ and 

maximum compressive stress along edge ‘bc’ of the base. 

H 2 

Direct and Bending 

Stresses 

Resultant stress, f  f0  3 p 
D2

 

H 2 

f  f0  3 p 
D

2
 

Wind Forces on Chimneys 

along edge ad 

 
 

along edge bc. 

Having seen the stress distribution for a wall subjected to wind forces, let us consider the 

effect of wind forces on all chimneys. 

Figure 7.19 shows a cylindrical chimney of height H, external diameters D, internal 

diameter d, subjected to horizontal wind pressure p as shown. 

If  is the unit weight of the masonry structure, direct stress due to the weight of the 

structure on its base f0 =  H. 

 
 P1 =  Pn cos  d 

 

 
Wind 

Pressure 

P 

 
 P2 =  Pn sin 


 P 

 

H  Pn 

 Pn 

R 



a 
 

c 

O 

 

R 

 

 Pn 
b 

d 

D 

a c 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Consider a 
small strip of 

 

(a) E 

l 

e 

v 

a 

t 

i 

o 

n 

 

( 

b 

) 

 

C 

r 

o 

s 

s 

- 

s 

e 

c 

t 

i 

o 

n 

width R , subtending an angle  at the centre and making anangle  with the axis ac of the 

section, 

P = Wind force reaching the small strip 

 p  R   H cos 

 p H R  cos 

Component of the force normal to the strip, 

 Pn   P cos 

 p H R cos     cos 



 p H R cos2  

Horizontal component of 

 Pn   P1   Pn cos 

 p H R cos3  

Another horizontal component of 

 Pn   P2   Pn sin 
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While summing up, this component gets cancelled when we consider a strip in the other 

quadrant as shown in Figure 7.19, while the components of Pn cos  are added up. 

 Total force in the direction X-X  2 Pn cos 

 2 p H R cos3  

Integrating over the whole exposed surface, from  = 0o to 90o. 



2 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

Forces and Stresses 

in Beams  
Total wind force P  

0 

 
 

2 p H R cos3  

 p DH  
2 
 k  p DH 

3 

where, k = Coefficient of wind resistance, and 

DH = Projected area of the curved surface. 

BM due to wind force, M  
PH

 

2 

 p DH 
2 
 

H
 

3 2 

 

 

 

Section modulus, Z 

 
p DH 

2
 

3 

 (D4  d 4 ) 

32 D 

Bending stress, f     
M

 
b 

Z
 

Once you calculate the bending stress, the extreme fibre stresses can be obtained by 

summing up with the direct stress due to self weight. 

Example .8 

A 10 m high masonry chimney wall of rectangular section 4 m  1.5 m is subjected 

to a horizontal wind pressure of 1500 N/m2 on the 4 m side. Find the maximum 
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and minimum stress intensities induced on the base. Take unit weight of masonry 

as 22 kN/m3. 

Solution 

Breadth, B = 4 m; Height, H = 10 m; and Depth, D = 1.5 m 

Cross-sectional area at the base, A = 4  1.5 = 6 m2 

Self weight of the wall, W =  BDH 

= 22  (4  1.5  10) = 1320 kN 

Direct compressive stress at the base, 

Wind pressure, = 1.5 kN/m2 

f    
W

 
 

0 
A

 
 

1320 
 220 kN/m2 

6 

Wind force on the vertical face of side 4 m, P  p  B  H 

 1.5  4  10  60 kN 
 

 

 
 

Dist 

anc 

e of 

cent 

re 

of 

gra 

vity 

of P 

fro 

m 

bas 

e, 
H 

 5 m 

 
 

2 
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Bending moment, M  
PH

 

2 

BD2 

 

 60  5  300 kNm 
 

4  1.52 3 

Direct and Bending 

Stresses 

Section modulus, Z    1.5 m 
6 6 

Bending stress due to bending moment,  f     
M

 
b 

Z
 

 

  
300 

  200 kN/m2 
1.5 

 

Maximum stress induced  220  200  420 kN/m2 

Minimum stress induced  220  200  20 kN/m2 

Example .9 

(compressive) 

(compressive) 

A masonry chimney 20 m high of uniform circular section, 5 m external diameter 

and 3 m internal diameter has to withstand a horizontal wind pressure of intensity 
2 kN/m2 of the projected area. Find the maximum and minimum stress intensities 

at the base. Take unit weight of masonry as 21 kN/m3. 

Solution 

Height of the chimney, H = 20 m 

External diameter, D = 5 m 

Internal diameter, d = 3 m 

Unit weight of masonry,  = 21 kN/m3 

Direct compressive stress due to self weight on the base of the chimney, 

f0   H  (21  20)  420 kN/m
2

 

Wind pressure, p = 2 kN/m2 

Projected area, A = DH = 5  20 = 100 m2 

Wind force, P = pA = 2  100 = 200 kN 

Distance of centre of gravity of the wind force from base,  
H

 

2 
 10 m 

Bending moment, M  
PH

 

2 

 

 200  10  2000 kNm 

Section modulus, Z  
 
 (D

4  d 4 ) 

32 D 

 
 (54  34 ) 

 10.68 m3 

32 5 

Bending stress, f     
M

 
b 

Z
   

2000 

10.68 

  187.266 kN/m2 

 

Maximum stress induced  420  187.266  607.266 kN/m2 

 

Minimum stress induced  420  187.266  232.734 kN/m2 . 
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Forces and Stresses 

in Beams 
SAQ 4 

(a) The section of a masonry pier is a hollow rectangle, external dimensions 

4 m  1.2 m and internal dimensions 2.4 m  0.6 m. a horizontal thrust of 

30 kN is exerted at the top of the pier in the vertical plane bisecting the 

length 4 m. the height of the pier is 5 m and unit weight of masonry is 

22.5 kN/m3. Calculate the maximum and minimum intensities of stress at the 

base. 

(b) A cylinder chimney of a hollow circular section, 2 m external diameter and 

1 m internal diameter is 25 m high. Given that the horizontal intensity of 

wind pressure is 1 kN/m3, determine the extreme intensities of stress at the 
base. Take coefficient of wind resistance as 0.6 and unit weight of masonry 

as 22.8 kN/m3. 

(c) A tapering chimney of hollow circular section is 45 m high. Its external 

diameter at the base is 3.6 m and at the top it is 2.4 m. It is subjected to wind 

pressure of 2.2 kN/m2 of the projected area. Calculate the overturning 
moment at the base. If the weight of the chimney is 6000 kN and the internal 

diameter at the base is 1.2 m, determine the maximum and minimum stress 

intensities at the base. 
 
 

 

 

 

 

SUMMARY 
 

Let us conclude the unit by summarising what we have covered in it. In this unit, we have 

 defined neutral axis, 

 introduced the effect of axial force and bending moment on different 
sections, 

 obtained the core or kernel of different sections, 

 calculated the stress distribution on different cross-sections due to axial 
force and bending moment, and 

 obtained stress distribution on walls and pillars due to wind forces. 
 

ANSWERS TO SAQs 
 

SAQ 1 

(a) 6.67 N/mm2 (compression) and 1.67 N/mm2 (compression). 

(b) Eccentricity : ex = 33.28 mm, ey = 22.18 mm; and 

Stresses : 1.67 N/mm2, 3.88 N/mm2, 1.67 N/mm2 and – 0.552 N/mm2. 

 
(c)  

 
SAQ 2 

e  
13 

D 

72 

(a) 38.806 N/mm2 (greatest) and 9.181 N/mm2 (least). 

(b) (i) W = 237.2 kN. 

(ii) Stress variations : at A = 17.4 N/mm2 and at B = 75 N/mm2. 

(c) Centre of gravity from one end, 
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x  
133.8 mm 

ricity, e = 36.2 mm and Iyy = 296.65  106 mm4
 

Maximum stress = (20.36 + 16.23) = 36.59 N/mm2 (compressive) 

Minimum stress = (20.36 – 13.05) = 7.31 N/mm2 (compressive) 

 
 

Direct and Bending 

Stresses 

SAQ 3 

Eccent 

(a) 225 kN. 

(b) From two equations involving P and e for extreme fibre stresses at op and 
bottom 

 

 
SAQ 4 

P  43.210 kN, and e  28.46 
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Maximum : 281.42 kN/mm2 and Minimum :  56.42 kN/m2 

(a) 1079.3 kN/m2 and 60.70 kN/m2 (compressive) 

(b) Moment : 6237 kN m 

Stresses : 2051.7 kN/m2 (compressive) and 705.5 kN/m2 (tensile). 
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UNIT -4 

THIN CYLINDERS AND THICK CYLINDERS 
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UNIT-IV 

THIN CYLINDERS AND THICK CYLINDERS 
 

Members Subjected to Axisymmetric Loads 

 

Thin walled cylinder: 

Preamble : Pressure vessels are exceedingly important in industry. Normally two types of pressure 

vessel are used in common practice such as cylindrical pressure vessel and spherical pressure vessel. 

 
In the analysis of this walled cylinders subjected to internal pressures it is assumed that the radial 

plans remains radial and the wall thickness dose not change due to internal pressure. Although the 

internal pressure acting on the wall causes a local compressive stresses (equal to pressure) but its value 
is neglibly small as compared to other stresses & hence the sate of stress of an element of a thin walled 

pressure is considered a biaxial one. 

 

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible. 
 

Let us consider a long cylinder of circular cross - section with an internal radius of R 2 and a constant 

wall thickness‘t' as showing fig. 
 

 
This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and outer 
surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside pressure to be 

ambient. 

 

By thin walled cylinder we mean that the thickness‘t' is very much smaller than the radius Ri and 

we may quantify this by stating than the ratio t / Ri of thickness of radius should be less than 0.1. 

 

An appropriate co-ordinate system to be used to describe such a system is the cylindrical polar one r, 

, z shown, where z axis lies along the axis of the cylinder, r is radial to it and       the 

angular co-ordinate about the axis. 

 

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction have 

also been shown. 

 
 

Such a component fails in since when subjected to an excessively high internal pressure. While it might fail by 

bursting along a path following the circumference of the cylinder. Under normal circumstance it fails by circumstances 
it fails by bursting along a path parallel to the axis. This suggests that the hoop stress is significantly higher than the 

axial stress. 
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In order to derive the expressions for various stresses we make following 

APPLICATIONS: 

 

 

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane components are 

common examples of thin walled cylinders and spheres, roof domes. 

 
ANALYSIS : In order to analyse the thin walled cylinders, let us make the following assumptions : 

 

• There are no shear stresses acting in the wall. 

 

• The longitudinal and hoop stresses do not vary through the wall. 

 

• Radial stresses r which acts normal to the curved plane of the isolated element are neglibly 

small as compared to other two stresses especially when 

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, 

although the internal pressure acting normal to the wall causes a local compressive stress equal to the 

internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel. However, for 
then walled pressure vessel the third stress is much smaller than the other two stresses and for this 

reason in can be neglected. 

 
Thin Cylinders Subjected to Internal Pressure: 

 
When a thin – walled cylinder is subjected to internal pressure, three mutually perpendicular principal 

stresses will be set up in the cylinder materials, namely 

 

• Circumferential or hoop stress 

 

• The radial stress 

 

• Longitudinal stress 

 
now let us define these stresses and determine the expressions for them 

 
circumferential stress: 

 
This is the stress which is set up in resisting the bursting effect of the applied pressure and can be most 
conveniently treated by considering the equilibrium of the cylinder. 
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In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal pressure 

p. 

 
i.e. p = internal pressure d 

 

= inside diameter 

 

L = Length of the cylinder t 

 

= thickness of the wall 

 

Total force on one half of the cylinder owing to the internal pressure 'p' 

 

= p x Projected Area 

 
= p x d x L 

 

= p .d. L ------------------------ (1) 

 
The total resisting force owing to hoop stresses σH set up in the cylinder walls 

 

= 2 .σH .L.t -------------------- (2) 

 
Because H.L.t. is the force in the one wall of the half cylinder. the 

equations (1) & (2) we get 

2 . σH . L . t = p . d . L 
 

σH = (p . d) / 2t 
 

 
ngitudinal Stress: 
 

Consider now again the same figure and the vessel could be considered to have closed ends and 

contains a fluid under a gage pressure p. Then the walls of the cylinder will have a longitudinal stress 

as well as a circumferential stress. 
 
 

 
Total force on the end of the cylinder owing to internal pressure 

Circumferential or 
Stress (σH) = (p .d)/ 2t 

hoop 
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= pressure x area 

 

= p x πd2 /4 

 

Area of metal resisting this force = πd.t. (approximately) because 
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Change in Dimensions : 
 

The change in length of the cylinder may be determined from the longitudinal strain. 

 

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will also get 
decreased in diameter or the lateral strain will also take place. Therefore we will have to also take into 

consideration the lateral strain.as we know that the poisson's ratio (ν) is 

 

 
where the -ve sign emphasized that the change is negative 

 

Consider an element of cylinder wall which is subjected to two mutually 𝜎r normal stresses σL and σH 

. 
 

Let E = Young's modulus of elasticity 
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umetric Strain or Change in the Internal Volume: 
 

When the thin cylinder is subjected to the internal pressure as we have already calculated that there is 
a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into picture. As a 

result of which there will be change in capacity of the cylinder or there is a change in the volume of the 

cylinder hence it becomes imperative to determine the change in volume or the volumetric strain. 

 

The capacity of a cylinder is defined as = 

Area X Length 

= πd2/4 x L 

 

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal pressure. 

 

(i) The diameter d changes to δ d + δ d 

ii)The length L changes to δ L + δ L 
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Therefore, the change in volume = Final volume - Original volume 
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Therefore to find but the increase in capacity or volume, multiply the volumetric strain by original 

volume. 

 
Hence 

 

Change in Capacity / Volume or 

 

 

 

indrical Vessel with Hemispherical Ends: 
 

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and 

hemispherical portion is different. While the internal diameter of both the portions is assumed to be 

equal 

 
Let the cylindrical vassal is subjected to an internal pressure p. 
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For The Hemispherical Ends: 
 

 
Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two 

mutually perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are 

neglected in comparison to the hoop stresses as with this cylinder having thickness to diameter less 
than1:20. 

 

Consider the equilibrium of the half – sphere 

 

Force on half-sphere owing to internal pressure = pressure x projected Area 

 

= p. πd2/4 
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L ν H] 

 
 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the spherical 

ends to expand by a different amount under the action of internal pressure. So owing to difference in 

stress, the two portions (i.e. cylindrical and spherical ends) expand by a different amount. This 
incompatibly of deformations causes a local bending and sheering stresses in the neighbour hood of 

the joint. Since there must be physical continuity between the ends and the cylindrical portion, for this 

reason, properly curved ends must be used for pressure vessels. 

 

Thus equating the two strains in order that there shall be no distortion of the junction 

 

 
But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

 

t2 / t1 = 0.7/1.7 or 
 

 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid ends for 
no distortion of the junction to occur. 

 

SUMMARY OF THE RESULTS : Let us summarise the derived results 

 

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

 

(i) Circumferential or loop stress 
 
 

 

(ii) Longitudinal or axial stress 

 
pd/4t 

Where d is the internal diameter and t is the wall thickness of the cylinder. then 

Longitudinal strain eL 

Hoop stain eH = 1 / E [ H ν L ] 

 

(B) Change of internal volume of cylinder under pressure 

 

 
(C) Fro thin spheres circumferential or loop stress 

t1 = 2.4 t2 

pd/2t 
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Thin rotating ring or cylinder 
 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p caused by 
the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit length of the 

circumference is 

 

p = m ω2 r 
 
 

 
Fig 19.1: Thin ring rotating with constant angular velocity ω 

 
Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its own mass 
when rotating. 

 

Thus considering the equilibrium of half the ring shown in the figure, 2F = p x 2r 

(assuming unit length), as 2r is the projected area 

F = pr 

 

Where F is the hoop tension set up owing to rotation. 

 

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant across the 

wall thickness. 

 

F = mass x acceleration = m ω2 r x r 

 
This tension is transmitted through the complete circumference and therefore is resisted by the complete 

cross – sectional area. 

 

Hoop stress = F/A = m ω2 r2 / A 

 
Where A is the cross – sectional area of the ring. 

 

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density ρ . 

 

hoop stress = ρ ω2 r2 σH 

 

=ρ. ω2 . r2 
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UNIV-V 

UNSYMMETRICAL BENDING AND SHEAR CENTRE 

GRAPHICAL SOLUTION MOHR’S STRESS CIRCLE 

 
The transformation equations for plane stress can be represented in a graphical form known as 
Mohr'scircle. This grapical representation is very useful in depending the relationships 
between nor mal and shear stresses acting on any inclined plan e at a point in a stresses body. 

 
To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

 

The above system represents a co mplete stress system for any condition of applied load in t wo 
dimensions 

 

 

The Mohr's stress circle is used to find out graphically the direct stress σ and sheer stress on 
any plane inclined at θ to the plane on which σxacts.The direction of θ here is taken in 
anticlockwise dire ction from the BC. 

 

STEPS: 

 

In order to do achieve the desired o bjective we proceed in the following manner 

 
(iv) Label the Block ABCD. 

 
(v) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 
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(vi) Plot the stresses on two adjace nt faces e.g. AB and BC, using the following signconvention. 

 

 
Direct stresses tensile positive; compressive, 
negative Shear stresses 1 tending to turn block 

clockwise, 

 

 
positive1 tending to turn block counter clockwise, 

 

negative 
 

[ i.e shearing stresses are +ve when its movement about the centre of the element is clockwise ] 

 
This gives two points on the graph which may than be labeled as respectively to denotestresses 

on these planes. 

 
• Join . 

 
• The point P where this line cuts the s axis is than the centre of Mohr's stress circle and the linejoining is 

diameter. Therefore the circle can now be drawn. 

 
Now every point on the circle then r epresents a state of stress on some plane through C. 
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Proof: 
 

 

 

 

 

 

 

 

 
 

Consider any point Q on the circum ference of the circle, such that PQ makes an angle 2 with 
BC, and dropa perpendicular from Q to meet the s axis at N.Then OQ represents the resultant 
stress on the plane an 

angle θ to BC. Here we have assu med that σx  σy 

Now let us find out the coordinates of point Q. These are ON and 

QN.From the figure drawn earlierON = OP + PNOP = OK + KP 

OP = σy + 1/2 ( σx− σy) 

 
= σy / 2 + σy / 2 + σx / 2 + σy / 2 

 
= ( σx  + σy ) / 2 
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θ 

 
 
 
 
 
 
 

PN = Rcos( 2θ −β 

) hence ON = OP + 

PN 

= ( σx + σy ) / 2 + Rcos( 2θ − ) 

= ( x + σy ) / 2 + Rcos2θ cosβ + 

Rsin2θsinβ now make the substitutions for 

Rcosβ and Rsinβ. 

Thus, 

 

ON = 1/2 ( x + σy ) + 1/2 ( x − σy )cos2θ + τxysin2 ) 

Similarly QM = Rsin( 2θ − β ) 

= Rsin2θcosβ - Rcos2θsinβ 

Thus, substituting the values of R cosβ and Rsinβ, we get 

QM = 1/2 ( σx − σy)sin2θ − τxycos2θ (2) 

If we examine the equation (1) and (2), we see that this is the same equation which we have already 

derivedanalytically 
 

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at to B C in the 
original stress system. 

N.B: Since angle PQ is 2θ on Mohr's circle and not θ it becomes obvious that angles ar e 
doubled onMohr's circle. This is the only differ ence, however, as They are measured in the same directi on and 
from 

the same plane 

inbothfigures.Further points 

to be noted are : 



90  

 
 

(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is zero, hence by 

definition OM is the length representing the maximum principal stresses σ1 and 2θ1 gives the angle of theplane θ1 from 

BC. Similar OL is the other principal stress and is represented by σ2 

(2) The maximum shear stress is given by the highest point on the circle and is represented y the radius ofthe circle. 

This follows that since shear stresses and complimentary sheer stresses have the same value; therefore 

the centre of the circle will always lie o n the s axis midway between σx and σy . [ since +τxy & 
−τxy are shearstress & complimentary shear stress so they are same in magnitude but different in 
sign. ] 

 
(3) From the above point the maxim um sheer stress i.e. the Radius of the Mohr's stress circle would be 

While the direct stress on the plane of maximum shear must be mid 1 may between σx and σ y i.e 
 

 

 

(4) As already defined the principal planes are the planes on which the shear components arezero. 

 
Therefore are conclude that on principal plane the sheer stress is zero. 

 

(5) Since the resultant of two stress at 90
0 

can be found from the parallogram of vectors as shown in 

the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's Circle. 
 
 

 
(6) The graphical method of solution for a complex stress problems using Mohr's circle is a very powerful 
technique, since all the information relating to any plane within the stressed element is contained in the single 
construction. It thus, provides a convenient and rapid means of solution. Which is less prone to arithmetical errors 
and is highly recommended. 
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  ILLUSRATIVE PROBLEMS: 
 
 

Let us discuss few representative problems dealing with complex state of stress to be 
solvedeither analytically or graphically. 

 
PROB 1: A circular bar 40 mm diameter carries an axial tensile load of 105 kN. What is 

the Value ofshear stress on the planes on which the normal stress has a value of 50 

MN/m2 tensile. 
 

Solution: 

Tensile stress σy= F / A = 105 x 103 / π x (0.02)2 

= 83.55 MN/m2 

Now the normal stress on an obliqe plane is given by the relation 

 

σ = σysin
2
θ 

50 x 106 = 83.55 MN/m2 x 106sin2θ 

θ = 50068' 

The shear stress on the oblique plane is then given by 

 

τ = 1/2 σysin2θ 

= 1/2 x 83.55 x 106 x sin 101.36 

= 40.96 MN/m2 

Therefore the required shear stress is 40.96 MN/m2 

PROB 2: 
For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows: 

 

(a) 85 MN/m
2 

tensile 

(b) 25 MN/m
2 

tensile at right angles to (a) 

(c) Shear stresses of 60 MN/m
2 

on the planes on which the stresses (a) and (b) act; the sheer coupleacting on 

planes carrying the 25 MN/m
2
stress is clockwise ineffect. 

Calculate the principal stresses and the planes on which they act. What would be the effect on these results if owing to a 

change of loading (a) becomes compressive while stresses (b) and (c) remain unchanged 
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Solution: 

 

The problem may be attempted both analytically as well as graphically. Let us first obtain the 
analyticalsolution 

 

The principle stresses are given by the formula 
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For finding out the planes on which the principle stresses act us the equation 

 

The solution of this equation will yeild two values θ i.e they θ1 and θ2 giving θ1= 31071' & θ2= 121071' 

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the 
otherstresses remains unchanged hence now the block diagram becomes. 

 

Again the principal stresses would be given by the equation. 
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Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle 
planes may bedepicted on the element as shown below: 

 
 

 

So this is the direction of one principle plane & the principle stresses acting on this would be 

σ1 when is acting normal to this plane, now the direction of other principal plane would be 900 

+ θ because the principal planes are the two mutually perpendicular plane, hence rotate the 
another plane θ + 900 in the same direction to get the another plane, n ow complete the material 
element if θ is negative that means weare measuring the angles in the opposite direction to the 
reference plane BC 
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Therefore the direction of other principal planes would be {−θ + 90} since the angle −θ is 
always less inmagnitude then 90 hence the quantity (−θ + 90 ) would be positive therefore 
the Inclination of other plane with reference plane would be positive therefore if just complete 
the Block. It would appear as 

 

 

 
 

If we just want to measure the angles from the reference plane, than rotate this block through 

1800 so asto have the following appearance. 
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So whenever one of the angles comes negative to get the positive value, 

 

first Add 900 to the value and again add 900 as in this case θ = −23074' 

so θ1 = −23074' + 900 = 66026' .Again adding 900 also gives the direction of other 

principle planesi.e θ2 = 66026' + 900 = 156026' 

This is how we can show the angular position of these planes clearly. 

 
GRAPHICAL SOLUTION: 

 

 
Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e 

the Mohr'sstress circle,for the first part, the block diagram becomes 
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Construct the graphical construction as per the steps given earlier. 

 

 

Taking the measurements from the Mohr's stress circle, the various quantities computed are 

2 
= 120 MN/m tensile 

 

2 
= 10 MN/m 

σ2 

0 

 
compressive 

= 34 

θ1 

0 
= 34 

θ2 

counter clockwise from BC 
 

0 
+ 90 = 12   counter clockwise from 

σ1 
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Part Second : The required configuration i.e the block diagram for this case is shown along with 
thestress circle. 

 
 

By taking the measurements, the various quantites computed are given as 

2 

σ1= 56.5 MN/m tensile 

 
2 

σ2= 106 MN/m compressive 

 
0 

θ1= 66 15' counter clockwise from BC 

 
0 

θ2= 156 15' counter clockwise from BC 

 

Salient points of Mohr's stress circle: 
 

 

1. complementary shear stresses (on planes 900 apart on the circle) are equal in magnitude 
 

0 0 

2. The principal planes are orthogonal: points L and M are 180 apart on the circle (90 apart in material) 

 
3. There are no shear stresses on principal planes: point L and M lie on normal stress axis. 

 

4. The planes of maximum shear are 45
0 

from the principal points D and E are 90
0 

, 
measured roundthe circle from points L and M. 

 
5. The maximum shear stresses are equal in magnitude and given by points D and E 

 
6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E 
both havenormal stress co-ordinate which is equal to the two principalstresses. 
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As we know that the circle represen ts all possible states of normal and shear 

stress on any plane through a stresses point in a material. Further we have seen 

that the co-ordinates of the point 1Q' are seen to be the same as those derived 

from equilibrium of the element. i.e. the normal and shear stress com ponents on 
any plane passing through the point ca n be found using Mohr's circle. Worthy of 

note: 
 

1. The sides AB and BC of the elem ent ABCD, which are 90
0 

apart, are represented on 

the circleby and they are 180
0 

apart. 
2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can b e 

seen at a point. Thus, it, can be seen that two planes LP and PM, 180
0 

apart on the diagram and 

therefore 90
0 

apart 

in the material, on which shear stress τθ is zero. These planes are termed as 
principal planes a nd normalstresses acting on them are known as principal 

stresses.Thus , σ1 = OL 

σ2 = OM 

 
3. The maximum shear stress in an element is given by the top and bottom points of the circle i.e by points J 1 and 

J2 ,Thus the maximum shear stress would be equal to the radius of i.e. τmax= 1/2( 1− σ2 ),the 
corresponding normal stress is obviously the distance 0OP = 1/2 ( x+  σy) , Further it can also be seen 

that the planes on which 

the shear stres s is maximum are situated 90 from the principal planes ( on circle ), and 
 

450 in the material. 

4. The minimum normal stress is jus t as important as the maximum. The algebraic minimum s 
tress couldhave a magnitude greater than that of the maximum principal stress if the state of 
stress wer e such that the centre of the circle is to the left of orgin. 

i.e. if σ1 = 20 MN/m2 (say) 

σ2 = −80 MN/m
2 

(say) 
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/ 2 ) = 50 MN/m 

 
 

Then τmax
m 

= ( σ1 − σ2 
2

 

 
If should be noted that the principal stresses are considered a maximum or 
minimum mathem atically e.g.a compressive or negative stress is l ess than a 
positive stress, irrespective or numerical value. 

 
5. Since the stresses on perpendul ar faces of any element are given by the co-ordinates of 
t wo diametrically opposite points on the circle, thus, the sum of the two normal stresses 
for any and all orientations of the element is constant, i.e. Thus sum is an invariant for any 
particular state of stress. 

 
Sum of the two normal stress comp onents acting on mutually perpendicular 
planes at a point in a stateof plane stress is not affected by the o rientation of 
these planes. 

 

 

This can be also understand from t he circle Since AB and BC are 
diametrically opposite thus, what ever may be their orientation, they will 
always lie on the diametre or we can say that their sum won't change, itcan also 
be seen from analytical relatio ns 

We know on plane BC; θ = 0 σn1 = σx      on 

plane AB; θ = 2700 

σn2 = σy 

 
Thus σn1 + σn2= σx+ σy 

 
6. If σ1 = σ2, the Mohr's stress circle degenerates into a point and no shearing stresses are d 
eveloped onxy plane. 

 

7. If σx+ σy= 0, then the center of Mohr's circle coincides with the origin of σ − τ co-ordinates. 
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ANALYSIS OF STRAINS 

 
CONCEPT OF STRAIN 

 
Concept of strain : if a bar is subj ected to a direct load, and hence a stress the bar will 

change in length.If the bar has an original length L and changes by an amount δL, the strain produce 
is defined as follows: 

 
Strain is thus, a measure of the deformation of the material and is a 
nondimensional Quantity i.e. it has nounits. It is simply a ratio of two qua 
ntities with the same unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Since in practice, the extensions of materials under load are very very small, it is often 

convenient to measureth-e6 strain in the form of strain x 10 i.e. micro strain, when the 

symbol used becom es  ∈. 

Sign convention for strain: 

 

Tensile strains are positive wherea s compressive strains are negative. The 
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strain defined earlier wasknown as linear strain or normal strain or the 
longitudinal strain now let us define the shear strain. 
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